MEIO - Summer School - Sequential Monte Carlo and MCMC methods applied to Stochastic Volatility Models
Títol del curs | Sequential Monte Carlo and MCMC methods applied to Stochastic Volatility Models |
Impartit per | Hedibert Freitas Lopes (Associate Professor of Econometrics and Statistics, Graduate School of Business, The University of Chicago, Chicago, Illinois, USA) |
Llengua del curs | Anglès |
Dates i horaris del curs | 22,23,26,29 de juny i 1 de juliol de 2009, de 9 a 13:30h. |
Tipus d'activitat i càrrega lectiva | Curs de 20 hores |
Reconeixement acadèmic | 2,5 ECTS com a assignatures optatives per als estudiants del MEIO UPC-UB, com a ALE per als de PRIMER I SEGON CICLE i com crèdits pel DOCTORAT. |
Data de matrícula | Del 18 de maig al 17 de juny de 2009 |
Temari del curs | 1. Bayesian inference, decision and selection: a brief review 2. Monte Carlo (MC) methods 2.1 MC integration 3. Markov chain MC (MCMC) methods2.2 Sampling importance resampling (SIR) 3.1 Gibbs sampler 4. Stochastic volatility (SV) models3.2 Metropolis-Hastings algorithms 4.1 SV as a dynamic models 4.2 Posterior inference in dynamic models via MCMC schemes 4.3 Revisiting Jaquier, Polson and Rossi (1994) and Kim, Shephard and Chib (1994) 5. Sequential Monte Carlo5.1 Sequential importance sampling (SIS) - Gordon, Salmond and Smith (1993) 5.2 Auxiliary particle filters (APF) - Pitt and Shephard (1999) 5.3 APF + parameter learning - Liu and West (2001) 5.4 Particle learning (PL) - Carvalho, Johannes, Lopes and Polson (2008) 5.5 Comparing SIS, APF and PL in the stochastic volatility context |
Share: